Search results for " Electron"

showing 10 items of 12924 documents

"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field

2018

This Colloquium discusses the recent progress in understanding the properties of spin-split superconductors under nonequilibrium conditions. Recent experiments and theories demonstrate a rich variety of transport phenomena occurring in devices based on such materials that suggest direct applications in thermoelectricity, low-dissipative spintronics, radiation detection, and sensing. This text discusses different experimental situations and presents a theoretical framework based on quantum kinetic equations. This framework provides an accurate description of the nonequilibrium distribution of charge, spin, and energy, which are the relevant nonequilibrium modes, in different hybrid structure…

---General Physics and AstronomyLibrary scienceFOS: Physical sciences02 engineering and technologysuperconductors01 natural sciences7. Clean energysuprajohteetSuperconductivity (cond-mat.supr-con)Spin splitting0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)media_common.cataloged_instanceEuropean union010306 general physicskvanttifysiikkamedia_commonPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityEuropean research021001 nanoscience & nanotechnologyquantum physicsCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers

2020

We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization …

/120Materials scienceScienceGeneral Physics and AstronomyGenetics and Molecular Biology02 engineering and technologyMaterials science Nanoscience and technology010402 general chemistry01 natural sciencesSignalArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionEngineeringNanoscience and technologylawMonolayerProximity effect (superconductivity)/128/639/925[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]lcsh:ScienceSpin-½[PHYS]Physics [physics]/639/166/639/301MultidisciplinarySpintronicsCondensed matter physicsNanotecnologiaGraphenePhysicsQ/639/766General ChemistryCiència dels materials5104 Condensed Matter Physics021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesFerromagnetismGeneral BiochemistryDensity of stateslcsh:QCondensed Matter::Strongly Correlated Electrons/1190210 nano-technology51 Physical SciencesNature Communications
researchProduct

Análisis de la utilidad del algoritmo Gradient Boosting Machine (GBM) en la predicción del fracaso empresarial

2018

Este estudio, novedoso en cuanto a la utilizacion de la metodologia basada en la cultura de los algoritmos, prueba la capacidad de la tecnica ‘Gradient Boosting Machine’ (GBM) en la prediccion de l...

010104 statistics & probabilityEconomics and EconometricsAccounting0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing02 engineering and technology0101 mathematics01 natural sciencesFinanceSpanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad
researchProduct